<div class="sw-email-modal sw--display-block"> <div id="emailModalContentContainer"> <span class="noty_close sw--position-absolute sw--position-right sw--padding-top-3 sw--padding-right-3 icon-cancel sw--opacity-8"></span> <div class="sw-row"> <div class="sw-email-modal__copy sw--position-relative sw--display-block sw--padding-vert-4"> <p class="last sw--font-size-16">Sign up to get email alerts on discount promotions. There might be one very soon...</p> <form action="/register/email-signup" class="sw-email-modal__signup sw--position-relative" data-confirmation="emailConfirmationModal" data-sw-email-modal-form> <input type="text" class="sw-email-modal__signup-input sw--input-height__medium" placeholder="Email address" name="email" /> <input type="hidden" class="sw-email-modal__signup-input" name="location" value="/product/L9SFQB8S9/structure-of-pcdk2-cyclina-bound-to-adp-and-1-magn" /> <input type="hidden" class="sw-email-modal__signup-input" name="confirmation" value="emailConfirmationModal" /> <input type="submit" class="btn-primary" value="Sign Up" /> <div id="emailModalFormError" class="text-error" style="display:none"></div> </form> </div> </div> </div>

Click and drag to rotate
Structure of PCDK2/CYCLINA bound to ADP and 1 MAGN 3d printed

Not a Photo

Coated Full Color Sandstone
Structure of PCDK2/CYCLINA bound to ADP and 1 MAGN 3d printed
Structure of PCDK2/CYCLINA bound to ADP and 1 MAGN 3d printed

Not a Photo

Structure of PCDK2/CYCLINA bound to ADP and 1 MAGN

Made By
  • 3D printed in Coated Full Color Sandstone: Fully colored material with a glossy and smooth finish.
  • Be the first to try. Learn more
  • This product is intended for mature audiences.
Share Link
Embed This Product

Product Description

Incorporation of divalent metal ions into an active site is a fundamental catalytic tool used by diverse enzymes. Divalent cations are used by protein kinases to both stabilize ATP binding and accelerate chemistry. Kinetic analysis establishes that Cyclin-dependent kinase 2 (CDK2) requires simultaneous binding of two Mg(2+) ions for catalysis of phosphoryl transfer. This tool, however, comes with a price: the rate-acceleration effects are opposed by an unavoidable rate-limiting consequence of the use of two Mg(2+) ions by CDK2. The essential metal ions stabilize ADP product binding and limit the overall rate of the reaction. We demonstrate that product release is rate limiting for activated CDK2 and evaluate the effects of the two catalytically essential Mg(2+) ions on the stability of the ADP product within the active site. We present two new crystal structures of CDK2 bound to ADP showing how the phosphate groups can be coordinated by either one or two Mg(2+) ions, with the occupancy of one site in a weaker equilibrium. Molecular dynamics simulations indicate that ADP phosphate mobility is more restricted when ADP is coordinated by two Mg(2+) ions compared to one. The structural similarity between the rigid ADP·2Mg product and the cooperatively assembled transition state provides a mechanistic rational for the rate-limiting ADP release that is observed. We demonstrate that although the simultaneous binding of two Mg(2+) ions is essential for efficient phosphoryl transfer, the presence of both Mg(2+) ions in the active site also cooperatively increases ADP affinity and opposes its release. Evolution of protein kinases must have involved careful tuning of the affinity for the second Mg(2+) ion in order to balance the needs to stabilize the chemical transition state and allow timely product release. The link between Mg(2+) site affinity and activity presents a chemical handle that may be used by regulatory factors as well as explain some mutational effects. 
What's in the Box
Cyclin A CDK2 Max Ml 1
Coated Full Color Sandstone
7.7 cm
7.5 cm
6.3 cm
Sign In or Join to comment.


We're sorry to inform you that we no longer support this browser and can't confirm that everything will work as expected. For the best Shapeways experience, please use one of the following browsers:

Click anywhere outside this window to continue.