<div class="sw--display-block sw--text-white sw--bg-dark-gray"> <div id="emailModalContentContainer"> <span class="noty_close sw--position-absolute sw--position-right sw--padding-top-3 sw--padding-right-3 icon-cancel sw--opacity-8 sw--z-index-10"></span> <div class="sw-row"> <div class="sw--position-relative sw--display-block sw--padding-3"> <p class="sw--font-size-16 sw--margin-bottom-2 sw--margin-right-6">Sign up to hear about special promotions</p> <form action="/register/email-signup" class="sw--position-relative" data-confirmation="emailConfirmationModal" data-sw-email-modal-form> <input type="text" class="sw--input-height__medium" style="width:60%;" placeholder="Email address" name="email" /> <input type="hidden" class="" name="location" value="/product/UECD7V3ZT/hyperbolic-paraboloid" /> <input type="hidden" class="" name="confirmation" value="emailConfirmationModal" /> <input type="submit" class="btn-primary sw--margin-left-1" value="Subscribe" /> <div id="emailModalFormError" class="text-error" style="display:none"></div> </form> </div> </div> </div>

Click and drag to rotate
Hyperbolic Paraboloid 3d printed

DIGITAL PREVIEW
Not a Photo

Hyperbolic Paraboloid 3d printed
Hyperbolic Paraboloid 3d printed

DIGITAL PREVIEW
Not a Photo

Hyperbolic Paraboloid 3d printed
Hyperbolic Paraboloid 3d printed

DIGITAL PREVIEW
Not a Photo

Hyperbolic Paraboloid

$15.00
3D printed in white nylon plastic with a matte finish and slight grainy feel.
QTY
All orders are backed by our
All orders are backed by our
Money Back Guarantee.
Product Description

This was generated by Mathematica using the following code:

f[u_, v_] := {u, v, u^2 - v^2}; scale = 40; radius = 0.75; numPoints = 24; gridSteps = 10; curvesU = Table[scale*f[u, i], {i, -1, 1, 2/gridSteps}]; curvesV = Table[scale*f[j, v], {j, -1, 1, 2/gridSteps}]; tubesU = ParametricPlot3D[curvesU, {u, -1, 1}, PlotStyle -> Tube[radius, PlotPoints -> numPoints], PlotRange -> All]; tubesV = ParametricPlot3D[curvesV, {v, -1, 1}, PlotStyle -> Tube[radius, PlotPoints -> numPoints], PlotRange -> All]; corners = Graphics3D[Table[Sphere[scale f[i, j], radius], {i, -1, 1, 2}, {j, -1, 1, 2}], PlotPoints -> numPoints]; output = Show[tubesU, tubesV, corners] Export["MathematicaParametricSurface.stl", output]
Details
What's in the box:
Hyperbolic Paraboloid
Dimensions:
8.15 x 8.15 x 8.15 cm
Switch to inches
3.21 x 3.21 x 3.21 inches
Switch to cm
Success Rate:
First To try.
What's this?
Rating:
Mature audiences only.
Sign In or Join to comment.
 
 
Logo

Hello.

We're sorry to inform you that we no longer support this browser and can't confirm that everything will work as expected. For the best Shapeways experience, please use one of the following browsers:

Click anywhere outside this window to continue.