<div class="sw--display-block sw--text-white sw--bg-dark-gray"> <div id="emailModalContentContainer"> <span class="noty_close sw--position-absolute sw--position-right sw--padding-top-3 sw--padding-right-3 icon-cancel sw--opacity-8 sw--z-index-10"></span> <div class="sw-row"> <div class="sw--position-relative sw--display-block sw--padding-3"> <p class="sw--font-size-16 sw--margin-bottom-2 sw--margin-right-6">Sign up to hear about special promotions</p> <form action="/register/email-signup" class="sw--position-relative" data-confirmation="emailConfirmationModal" data-sw-email-modal-form> <input type="text" class="sw--input-height__medium" style="width:60%;" placeholder="Email address" name="email" /> <input type="hidden" class="" name="location" value="/product/NVA52FEPE/truncated-tetrahedron?li=productBox-search" /> <input type="hidden" class="" name="confirmation" value="emailConfirmationModal" /> <input type="submit" class="btn-primary sw--margin-left-1" value="Subscribe" /> <div id="emailModalFormError" class="text-error" style="display:none"></div> </form> </div> </div> </div>

Click and drag to rotate
Truncated Tetrahedron 3d printed CG Rendering

Not a Photo

CG Rendering
Truncated Tetrahedron 3d printed CG Rendering
Truncated Tetrahedron 3d printed CG Rendering

Not a Photo

Truncated Tetrahedron

Made by
3D printed in white nylon plastic with a matte finish and slight grainy feel.
All orders are backed by our
All orders are backed by our
Money Back Guarantee.
Product Description
This is a Truncated Tetrahedron (8 faces: 4 regular hexagons and 4 equilateral triangles) included into a cube.
This quite big (more than 5x5x5cm) but still affordable model demonstrates an interesting result.
I shows that, since the coodinates of the vertices are of the form (3,1,1) with permutations or minus signs, the distance from the center of the polyhedron to a vertex is sqrt(3x3 + 1x1 + 1x1) i.e. sqrt(11), while the size of a side is 2sqrt(2), the diagonal of two squares.
Thus a truncated tetrahedron whose vertices are located on the unit sphere would have a side of 2sqrt(2/11). Nice result, just looking at a model...
But there is more: with a similar argument, the separation between two vertices, that is the angle theta between two segments going from the center of the polyhedron to two vertices that are neighbours can be found by this relationship:
sin(thetha/2) = sqrt(2/11), which gives theta=50.4788°
What's in the box:
Truncated Tetrahedron
CG Rendering
5.2 x 5.2 x 5.2 cm
Switch to inches
2.05 x 2.05 x 2.05 inches
Switch to cm
Success Rate:
First To try.
What's this?
Mature audiences only.
Sign In or Join to comment.


We're sorry to inform you that we no longer support this browser and can't confirm that everything will work as expected. For the best Shapeways experience, please use one of the following browsers:

Click anywhere outside this window to continue.