Click and drag to rotate

DIGITAL PREVIEW
Not a Photo

White Natural Versatile Plastic

DIGITAL PREVIEW
Not a Photo

# Hairy Asteriod

\$75.20
3D printed in white nylon plastic with a matte finish and slight grainy feel.
QTY

You must be logged in and verified to contact the designer.
##### Product Description
Texture experiment in Mathematica using vertex data:
Clear[x1, y1, z1, g1, g, ga, gb, t, p, d, a]
(* surface with cusps : asteroid of rotation*)
x1 = Cos[t]^3*Sin[p];
y1 = Sin[t]^3*Sin[p];
z1 = Cos[p];
w1 = {x1, z1, y1};
g = Flatten[Table[w1, {t, 0, Pi, Pi/50}, {p, -Pi, Pi, 2*Pi/50}], 1];
Length[g]
(* texture generating array*)
d = 0.01;
a[0] = {d, d, d}
a[2] = {d, d, -d}
a[3] = {d, -d, d}
a[4] = {-d, d, d}
a[5] = {-d, d, -d}
a[6] = {-d, -d, d}
a[7] = {-d, d, -d}
a[8] = {-d, -d, -d}
(* applying the texture to the surface*)

g1 = Table[g[[n]] + a[Mod[n, 8]], {n, 1, Length[g]}];
ga = ListSurfacePlot3D[g1, MaxPlotPoints -> 200, Axes -> False,
Boxed -> False, Mesh -> None,
PlotStyle -> {Black, Specularity[White, 20]}]
gb = ParametricPlot3D[w1, {t, 0, Pi}, {p, -Pi, Pi}, PlotPoints -> 50,
PlotRange -> All, PlotStyle -> {LightBlue, Specularity[White, 30]},
Axes -> False, Boxed -> False, Mesh -> False]
gw = Show[{ga, gb}, PlotRange -> All]
Export["HairyAsteriod.3ds", gw]
Export["HairyAsteriod.obj", gw]
Export["HairyAsteriod.stl", gw]
##### Tags
geometry parametric textures
##### Details
What's in the box:
Hairy Asteriod
Dimensions:
5.12 x 5.13 x 5.09 cm
Switch to inches
2.02 x 2.02 x 2 inches
Switch to cm
Success Rate:
First To try.
What's this?
Rating:
Mature audiences only.

\$200.52
\$168.39
\$4,276.10